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Abstract: Plant photosynthesis is the fundamental driver of all the biospheric functions. Alpine meadow on the 
Tibetan Plateau is sensitive to rapid climate change, and thus can be considered an indicator for the response of 
terrestrial ecosystems to climate change. However, seasonal variations in photosynthetic parameters, including the 
fraction of photosynthetically active radiation by canopy (FPAR), the light extinction coefficient (k) through canopy, 
and the leaf area index (LAI) of plant communities, are not known for alpine meadows on the Tibetan Plateau. In 
this study, we used field measurements of radiation components and canopy structure from 2009 to 2011 at a 
typical alpine meadow on the northern Tibetan Plateau to calculate these three photosynthetic parameters. We 
developed a satellite-based (NDVI and EVI) method derived from the Beer-Lambert law to estimate the seasonal 
dynamics of FPAR, k ,and LAI, and we compared these estimates with the Moderate Resolution Imaging Spectro-
radiometer (MODIS) FPAR (FPAR_MOD) and LAI product (LAI_MOD). The results showed that the average daily 
FPAR was 0.33, 0.37 and 0.35, respectively, from 2009 to 2011, and that the temporal variations could be explained 
by all four satellite-based FPAR estimations, including FPAR_MOD, an FPAR estimation derived from the 
Beer-Lambert law with a constant k (FPAR_LAI), and two FPAR estimations from the nonlinear functions between 
the ground measurements of FPAR (FAPRg) and NDVI/EVI (FPAR_NDVI and FPAR_EVI). We found that 
FPAR_MOD seriously undervalued FPARg by over 40%. Tower-based FPAR_LAI also significantly underestimated 
FPARg by approximately 20% due to the constant k (0.5) throughout the whole growing seasons. This indicated 
that using FPAR_LAI to validate the FPAR_MOD was not an appropriate method in this alpine meadow because 
the seasonal variation of k ranged from 0.19 to 2.95 in this alpine meadow. Thus, if the seasonal variation of k was 
taken into consideration, both FPAR_NDVI and FPAR_EVI provided better descriptions, with negligible overesti-
mates of less than 5% of FAPRg (RMSE=0.05), in FPARg estimations than FPAR_MOD and FPAR_LAI. Combining 
the satellite-based (NDVI and EVI) estimations of seasonal FPAR and k, LAI_NDVI and LAI_EVI derived from the 
Beer-Lambert law also provided better LAIg estimations than LAI_MOD (less than 30% of LAIg). Therefore, this 
study concluded that satellite-based models derived from the Beer-Lambert law were a simple and efficient method 
for estimating the seasonal dynamics of FPAR, k and LAI in this alpine meadow. 

Key words: radiation components; Beer-Lambert law; light extinction coefficient; leaf area index; alpine meadow; 
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1  Introduction 
Alpine meadow ecosystems on the Qinghai-Tibetan Plateau, 
one of the largest soil carbon pools with 11.3 Pg C in China, 
has a soil carbon density of 18.2 Kg m−2 (Ni, 2002; Saito et al., 
2009). Compared to other terrestrial ecosystems, fragile alpine 
meadows are among the most sensitive ecosystems to climate 
change (Saito et al., 2009; Chen et al., 2013; Piao et al., 2019). 
The alpine ecosystems on the plateau undergo large diurnal 
and seasonal variabilities in climate conditions, in extreme 
cases, even experiencing “four seasons” in a single day 
(Chen et al., 2009). Alpine grasslands are the most common 
landscape on the Qinghai-Tibetan Plateau, covering ap-
proximately 20% (2.5×106 km2) of the area of the plateau 
(Zheng et al., 2000). Understanding canopy structure and 
carbon capture capability (photosynthesis) are necessary to 
determine the contribution alpine meadows make to re-
gional and global carbon cycles (Li and Fang, 1999; Zhao et 
al., 2006). 

Plant-driven photosynthesis, usually quantified as gross 
primary production (GPP), is the basis of all the terrestrial 
biospheric functions (Gitelson et al., 2006), and represents 
the productive capacity of ecosystems (Running et al., 2000). 
Leaf area index (LAI) is used for quantifying vegetation 
canopy structure (Behera et al., 2010), and plays a signifi-
cant role in many ecological and hydrological models for 
simulating water and carbon cycles (Weiss et al., 2004;  
Cao et al., 2015). For example, the fraction of photosyn-
thetically active radiation (PAR, solar radiation in the 
400–700 nm wavebands) by canopy (FPAR) is one critical 
input parameter of models used to estimate GPP estimations 
models. FPAR can be estimated indirectly from LAI meas-
urements following the Beer-Lambert law (Ruimy et al., 
1999). However, direct measurements of LAI are time- and 
labor-intensive for small canopies. In harsh environments 
like those found in Tibetan alpine meadows, it is virtually 
impossible to undertake ongoing observations over the long 
term.  

Remote sensing data can overcome the space and time 
limitations that hinder the obtaining of field measurements 
(de Almeida et al., 2018), and thus can capture consistent, 
continuous observations of vegetation structure (Niu et al., 
2017c; Xiao et al., 2019). For example, satellite products 
obtained from the Moderate Resolution Imaging Spectrora-
diometer (MODIS), such as LAI_MOD and FPAR_MOD 
(Collection 6), are capable of revealing vegetation canopy 
structure and seasonal variations across the globe. Conse-
quently, numerous models based on the light use efficiency 
(LUE) theory and driven by satellite data have been devel-
oped to estimate GPP (Running et al., 2000; Xiao et al., 
2004; Yan et al., 2009; Tang et al., 2015; Niu et al., 2016; 
Niu et al., 2017b). Among these are the MOD17 algorithm 
(MOD) (Running et al., 2000; Heinsch et al., 2003), the 

vegetation photosynthesis model (VPM) (Xiao et al., 2004; 
Xiao et al., 2005), and the photosynthetic capacity model 
(PCM) (Gao et al., 2014). In these satellite-based models, 
FPAR is indirectly derived from the Beer-Lambert law 
based on the linear relationship between LAI measurements 
and LAI_MOD (Rossini et al., 2012; Dong et al., 2015; Niu 
et al., 2016; Niu et al., 2017b) or from statistical inferences 
using paired comparisons with eddy covariance-based GPP 
estimations (Gao et al., 2014; Niu et al., 2017c). Thus, it is 
difficult to determine whether the FPAR value is correct, 
because many site-specific factors, such as vegetation types, 
phenology, and environmental stresses, can affect the accu-
racy of FPAR measurements (Heinsch et al., 2003; Tang et 
al., 2015; Wagle et al., 2016; Fu and Wu, 2017). Moreover, 
the light extinction coefficient (k), a key parameter in the 
Beer-Lambert law, is always set to a constant of 0.5 for 
herbaceous crops in most study areas (Varlet-Grancher et al., 
1980; Fu et al., 2012), and this can result in estimation er-
rors because k also has site-specific seasonal trends (Wang 
et al., 2004; Saitoh et al., 2012). Of course, it is also possi-
ble that a series of inaccurate parameters produces an accu-
rate estimate result. Alternatively, radiation transfer models 
using simple measurements of radiation components can 
provide a useful way to accurately estimate LAI and corre-
sponding parameters (Behera et al., 2010; Yang et al., 2015). 
This is because solar radiation is a driver of biological ac-
tivities, and plant canopies interact in various canopy struc-
ture-dependent ways with solar radiation (Chen et al., 1997). 
Therefore, site-specific photosynthetic parameters, FPAR, k 
and LAI, estimations based on tower-based radiation meas-
urements are always necessary, not only for accurate GPP 
estimations, but to validate model parameters in alpine 
meadow ecosystems.  

In this study, we selected a typical alpine steppe―a Kor-
bresia meadow on the northern Tibetan Plateau, as our 
study site. At this site, we: 1) quantified site-specific photo-
synthetic parameters, FPAR, k and LAI, using tower-based 
plants and meteorological measurements from 2009 to 2011; 
2) evaluated the deviation of satellite-based FPAR estima-
tions from corresponding field measurements; 3) and used 
available satellite-based products to develop models to es-
timate and validate photosynthetic parameters in this alpine 
swamp meadow. 

2  Materials and methods 
2.1  Site description 
The study site is a typical alpine steppe—Korbresia 
meadow, located at the Damxung grassland station 
(30.49783°N, 91.06636°E, elevation 4333 m), a long-term 
position monitoring station of the Chinese Academy of 
Sciences on the northern Tibetan Plateau (Shi et al., 2006; 
Niu et al., 2017b). The site has a plateau monsoon climate, 
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and is characterized by intensive radiation (annual mean 
sunlight and solar radiations are 2880.9 h and 7527.6 MJ 
m2, respectively), low air temperatures (annual mean 
temperature is 1.8 ℃), and short cool summers. Average 
annual precipitation, over half of which occurs in July and 
August, is 476.6 mm (Niu et al., 2017a). The alpine 
meadow’s vegetation is dominated by three species: Stipa 
capillacea, Carex montis-everestii and Kobresia pygmaea, 
and total coverage is 50% to 80%. During the study period 
from 2009 to 2011, the frozen period (Ts < 0 ℃) was from 
November to March. Vegetation began to green-up at the 
beginning of May, and thus, we set the growing season as 
beginning on or around 1 May (the 121st day of year, DOY 
121) and continuing to mid-October (DOY 281) (Niu et al., 
2017b). 
2.2  Ground meteorological and plant measurements 
Ground meteorological measurements include air tempera-
ture at the height of 2 m (Ta), precipitation (PPT), rela-
tive humidity, vapor pressure deficit (VPD), soil tem-
perature at a depth of 5 cm (Ts), and soil water content 
(SWC). Tower-based radiation measurements include ob-
servations of standard radiation observations and sub-spec-
tra radiation (photosynthetically active radiation, with 
wavelengths of 380–710 nm). Standard radiation ob-
servations include four radiative components: solar short-
wave down-welling radiation (Rt), shortwave up-welling 
radiation from land surface reflection (Rr), longwave 
down-welling radiation (Ri), and longwave up-welling ra-
diation (Rl). Thus, the net radiant energy (Rn) was obtained 
from equation (1) (Baldocchi et al., 1984). 
 Rn=RtRr+RiRl      (1) 
The sub-spectra radiation observations consist of incident 
photosynthetically active radiation above the canopy (PAR) 
and the absorbed PAR by canopy (APAR), which is the dif-
ference between PAR and the sum of canopy-reflected 
PARr (PARreflect), and the understory PARu (PARunder) 
from two of the same sensors (Eq. 2). Thus, the fraction of 
absorbed PAR by vegetation canopy (FPARg) can be di-
rectly calculated using the ratio between APAR and PAR 
(Eq. 3).  
 APAR=PAR(PARr+PARu) (2) 
 FPAPg=APAP/PAR (3) 
In this study, the units of all radiation components were 
converted to MJ m2 in order to make pairwise comparisons 
(Xu et al., 2007). All measurements were recorded in a 
data-logger once every 30 mins. We also established five 
identical sampling plots, each with one sampling quadrat 
(0.5 m×0.5 m), along an almost 2-km-long sample line. 
Aboveground parts of plants were clipped by species to 
ground level, and we then measured the vegetation leaf area 
index (LAIg) of the plant communities every two weeks 

during the growing season. 

2.3  Satellite-based measurements 
Using the study site position as the center pixel, we ex-
tracted MODIS 8-day surface reflectance composite data 
(MOD09A1) and MODIS LAI/FPAR (LAI_MOD/FPAR_ 
MOD) data for the years 2009 to 2011 from the Land Proc-
esses DAAC (http://daac.ornl.gov/MODIS). Based on 
MOD09A1, we calculated two vegetation indices (NDVI 
and EVI) using Eq. 4 and Eq. 5, and a Land Surface Water 
Index (LSWI) using Eq.6 (Xiao et al., 2005; Yan et al., 2009; 
Dong et al., 2015). 
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where nir (841–876 nm), red (620–670 nm), blue (459– 
479 nm), and swir (459–479 nm) are the four surface re-
flectance values from different spectral bands. 
2.4  Satellite-based FPAR estimations 
Except for ground tower-based FPARg, and MODIS FPAR 
products (FPAR_MOD), FPAR can also be derived from 
LAIg observations based on the Beer-Lambert law (Ruimy 
et al., 1999) (Eq. 7): 

 
( )_ 0.95 (1 e )k LAImgFPAR LAI - ´= ´ -  (7) 

where k is the light extinction coefficient with a value of 0.5 
for herbaceous crops (Varlet-Grancher et al., 1980; Fu et al., 
2012). The LAImg is a linear regression conversion between 
ground LAI measurements and MOD15A2 for consecutive 
measurements once every 8 days during the study period 
(Niu et al., 2016). In this study, FPARg was observed in 
tower-based radiation components, meaning that we can 
estimate the actual extinction coefficient (kt) using a modi-
fied version of the Beer-Lambert law (Eq. 7) as follows (Eq. 8): 

 
ln(1 / 0.95)FPARgkt

LAImg
- -

=  (8) 

Using the relationships between FPARg, kt and three 
satellite-based measurements (NDVI, EVI, and LSWI), 
we developed satellite-based statistical models to esti-
mate FPAR and kt (FPARs and kts). These models could 
be used to directly estimate the LAI  (LAIs) with the modi-
fied version of the Beer-Lambert law as follows (Eq. 9): 

 ln(1 / 0.95)FPARsLAIs
kts

- -
=  (9) 

2.5  Statistical analysis 
In this study, we reconciled the ground measurements to the 
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8-day time step as MODIS products were, because we as-
sumed the plants conditions in each 8-day interval were the 
same (Fu et al., 2012; Gao et al., 2015; Niu et al., 2017b). 
Daily scale gaps of climate data and vegetation indices were 
linear or cubic interpolations in days of the year (DOYs). 
The normality (Shapiro-Wilk test) and homogeneity of var-
iance test (Bartlett test) (P > 0.05) were performed in daily 
and integrated growing season FAPR estimations. We then 
employed a one-way analysis of variance (ANOVA) and 
Tukey’s honest significant difference (HSD) to investigate 
the performance of different models for FPAR estimations 
at α=0.05. Additionally, a linear regression analysis and 
two indices, RMSE and RPE (Eq. 10 and Eq. 11), were 
used to evaluate the model agreement and bias from 
FPARg. 
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where xi, x , yi and y  represent, respectively, the satel-
lite-based FPAR estimations, the mean value of satel-
lite-based FPAR estimations, the FPARg time series, and the 
mean value of FPARg. All statistical and modeling proce-
dures were performed in the R statistical computing package 
(v3.5.1). 

3  Results 
3.1  Tower-based radiation measurements 
Seasonal variations of all radiation components, including 
total radiation (Rt), net radiation (Rn), PAR and APAR, 
showed consistent and single peak patterns in each year 
from 2009 to 2011 (Fig. 1). However, the magnitude of 
seasonal variations and the date of the peaks were different 
among the four radiation components. The seasonal Rt 
variation was the most robust from 2009 to 2011 with an 
average of 19.66 (±4.07, standard deviation (SD), and 
20.7 % of the coefficient of variation (CV)) MJ m1 day1 

(Fig. 1a). Net radiation accounted for 26.2 % of total radia-
tion (5.16 MJ m1 day1), but the CV was the most signifi-
cant (79.2%, SD=7.72 MJ m1 day1), indicating seasonal 
variations of Rn were the most conspicuous (Fig. 1). The 
PAR was 43.4 % of total radiation (8.53 MJ m1 day1), of 
which 39.5% was absorbed by the canopy (3.37 MJ m1 
day1, mean value of APAR). The CVs of both PAR and 
APAR were both approximately 20%, close to that of Rt 
(Fig. 1b). 

The peak value of Rt (DOY 150–160) and PAR (DOY 
150–160) occurred earlier than those of Rn (DOY 210–230) 
and APAR (DOY 250–260) (Fig. 1). The inter-annual  

variations of all radiation components were weak from 2009 
to 2011. Specifically, the CV of the inter-annual Rn varia-
tion was 8.4%, while those of the other three radiation 
components were less than 3.0 %. By comparison, Rt and 
PAR were more significant in 2009, while Rn and APAR 
were higher in 2011 than the other years (Fig. 1). 

 

 
 

Fig. 1  The 8-day step radiation observations during the 
years 2009 to 2011. (a) Total radiation and net radiation. (b) 
Photosynthetically active radiation (PAR) and the absorbed 
PAR by canopy (APAR). 

 

3.2  Comparison of FPAR estimations 
The seasonal dynamics of satellite-based FPAR estimations, 
FPAR_MOD and FAPR_LAI, corresponded well with the 
observed FPARg from 2009 to 2011 (Fig. 2a). The peak of 
FPAR generally appeared between mid-August and the be-
ginning of September (DOY 225–255), had values that 
could exceed 0.5 (Fig. 2a). FPAR_MOD and FAPR_LAI 
captured more than 57% of FPARg patterns in the alpine 
meadow study area (R2>0.57, P<0.0001, Figs. 2b-2d). With 
respect to the results of individual years, satellite-based 
FPAR estimations provided a better description (with larger 
R2) for seasonal dynamics of FPARg in 2009 than in the 
other two years (Figs. 2b-2d).  
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Fig. 2  Seasonal patterns of FPAR observations (FPARg) and satellite-based FPAR estimations from 2009 to 2011 (a); and 
comparison with the FPARg from: 2009 (b); 2010 (c); and 2011 (d). Slope values (Slope) in (b–d) are the linear relationships 
between FAPRg and satellite-based FPAR estimations, and the dashed lines are the reference lines of 1:1. All linear  
regressions are extremely significant (P < 0.0001).  
 
Table 1  Satellite-based FPAR estimations and comparisons with tower-based FPAR observations during the growing seasons 
from 2009 to 2011. 

Daily average FPAR estimations (n=21) 

Mean of SD RMSE RPE (%) 

Mean FPAR 
(n=63) Method 

2009 2010 2011 2009 2010 2011 Mean 2009 2010 2011 Mean Mean (SD) 

FPAR_MOD 0.19 (0.08) 0.21 (0.11) 0.20 (0.09) 0.16 0.19 0.16 0.17 43.1 43.0 41.9 42.7 0.20 (0.09) a 

FPAR_LAI 0.26 (0.16) 0.30 (0.21) 0.30 (0.20) 0.13 0.20 0.16 0.17 23.4 19.1 15.1 19.2 0.29 (0.19) b 

FPAR_NDVI 0.34 (0.05) 0.36 (0.05) 0.36 (0.06) 0.07 0.06 0.03 0.05 −4.2 3.8 −1.3 −0.5 0.36 (0.05) c 

FPAR_EVI 0.35 (0.05) 0.36 (0.06) 0.36 (0.05) 0.07 0.06 0.03 0.05 −4.1 4.5 1.2 −0.3 0.35 (0.05) c 

FPARg 0.33 (0.08) 0.37 (0.10) 0.35 (0.09) 0 0 0 0 0 0 0 0 0.35 (0.08) c 

Note: *SD is the standard deviation of the average 8-day composite FPAR estimations. Negative RPE indicates that satellite-based FPAR estimations 
overestimate the FPAR observations. Columns with the different alphabets indicate that significant difference existed among diverse mean FPAR esti-
mations (α=0.05, P<0.01). 

 
However, FPAR_MOD and FAPR_LAI showed signifi-

cant underestimations (P<0.05, RMSE=0.17) compared 
with FPARg (42.7% and 19.2% of RPE, respectively) (Table 
1 and Fig. 2). In addition, the daily average of FPARg was 
0.35, and its CV for seasonal variations was relatively small 
(22.3%), while the CVs of seasonal variations for 
FPAR_MOD and FAPR_LAI were above 40%. Specifically, 
FPAR_MOD showed a consistent underestimation of 

FPARg throughout all growing seasons, and especially at 
the beginning and the end of the growing seasons (Fig. 2a). 
On the other hand, FAPR_LAI seriously underestimated 
FPARg at the beginning and the end of the growing season, 
despite of a significant overestimation of FPARg in the 
middle of the growing season (Fig. 2a). This resulted in 
maximum CV values (above 60%) throughout the growing 
season (Table 1).  
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4  Discussion 
4.1  Comparison of FPAR estimations 
The seasonal dynamics of FPARg measurements from 2009 
to 2011were captured by FPAR_MOD in the alpine meadow 
study area. During the past two decades, most of previous 
studies assessed the accuracies of MODIS FPAR/LAI and 
showed that the seasonal patterns of FPARg were in line 
with the FPAR_MOD (Hanan et al., 2002; Fensholt et al., 
2004; Fu et al., 2012; Niu et al., 2016; Niu et al., 2017b; de 
Almeida et al., 2018), although the inter-annual variability 
of FPARg was always difficult to capture by the remote 
products (Verma et al., 2015) because the interaction be-
tween biotic and environmental conditions had seriously 
confounding effects on the smaller magnitudes of the in-
ter-annual variations of FPAR (Wohlfahrt et al., 2008). 
However, FPAR_MOD significantly underestimated FPARg 
measurements (by over 40.0%) and FPAR_LAI 
(by approximately 30%) in this study. In contrast, a previous 
study compared FPAR_MOD and FPAR_LAI measure-
ments in 2010 in 34 alpine grasslands of the northern Ti-
betan Plateau, and found that FPAR_MOD overestimated 
FPAR_LAI by 20%–24% at spatial scale for fenced and 
open grazed areas, respectively (Fu and Wu, 2017). The 
main reason for these different findings can be attributed to 
the different methods for comparing FPAR: seasonal in the 
case of this study and spatial in the case of the other study 
(Fu and Wu, 2017). Moreover, inter-annual variations of 
vegetation canopy densities and climate conditions might 
lead to different results. For example, this study showed that 
PAR accounts for about 43.4% of the total solar radiation, a 
value that is slightly lower than that of 44.2% measured 
from 2004 to 2007 in this alpine meadow (Zhang et al., 
2009) However, both values were close to the constant (0.45) 
of the MOD17A2 algorithm (Heinsch et al., 2003; Niu et al., 
2016). Many previous studies also showed that, compared 
with FPAR_MOD for different seasons and different spatial 
biomes, realistic ground FPARg could be undervalued 
(Olofsson and Eklundh, 2007; Zhang et al., 2008), overval-
ued (Fensholt et al., 2004; Turner et al., 2005; Fu et al., 
2012) or be in a close agreement (Turner et al., 2006; Zhang 
et al., 2008) because of different vegetation canopy densities 
and climate conditions (Shi et al., 2006; Olofsson and Ek-
lundh, 2007; Fu et al., 2012). Plateau ecosystems have un-
dergone profound changes due to recent changes in climate 
conditions and human activities (Chen et al., 2014; Zhang et 
al., 2015; Du et al., 2018; Piao et al., 2019). This might re-
sult in the different estimates of FPAR_MOD over time at 
the same site. 

4.2  Improvements of satellite-based FPAR estimations 
Tower-based FPAR_LAI estimations derived from the 
Beer-Lambert law had a significant underestimation of 
FPARg by approximately 20% from 2009 to 2011 in the al-
pine meadow. This may be attributed to the constant k (0.5) in 

the Beer-Lambert law (Varlet-Grancher et al., 1980; Fu et al., 
2012). Seasonal variations of k generally increased as the 
angle of the solar zenith angle increased (Wang et al., 2004), 
and as a result, the setting of k as a constant invariably re-
sulted in FPAR_LAI estimation bias (Baldocchi et al., 1984; 
Wang et al., 2004; Saitoh et al., 2012). Actually, seasonal 
variation of k value derived from tower-based radiation and 
plant measurements in the study area and ranged from 0.19 
to 2.95. Previous studies had suggested that remote indices 
(NDVI, EVI, and LSWI) had a robust ability to interpret 
seasonal FPARg (Fensholt et al., 2004), even FPAR calcu-
lated from NDVI and EVI gave better descriptions in grass-
lands for FPARg than FPAR_MOD (Zheng et al., 2018). At 
the same, recent remote-based GPP models use revised 
FAPR parameters for the MOD17A2 algorithm (Heinsch et 
al., 2003) describing the statistical functions of EVI and 
NDVI, and these also show better model performance for 
GPP estimations (Niu et al., 2017c; Zhang et al., 2019; Zhou 
and Xin, 2019). In this study, remote indices (NDVI, EVI, 
and LSWI) had a significant nonlinear relationship with 
FPARg (quadratic function) and the actual light extinction 
coefficient (kt) (exponential function) (P<0.0001) (Fig. 3). 
By comparison, NDVI and EVI provided better FAPR 
simulations (higher R2) than LSWI (Fig. 3). In addition, 
FPAR_NDVI and FPAR_EVI provided better descriptions, 
with a negligible overestimation less than 5% of FAPRg 
(RMSE=0.05), in FPARg estimations than FPAR_MOD and 
FPAR_LAI did (Table 1).  
4.3  Satellite-based LAI estimations 
LAI_MOD substantially undervalued LAIg measurements 
rendering values of less than 30% of LAIg, although the 
values for seasonal dynamics matched well (Fig. 4). Com-
pared with other studies, the LAIg value shown by 
LAI_MOD in this study was an obvious underestimation 
with a bias of −0.3 (Yin et al., 2017). However, this value was 
overestimated by approximately 2%–15% in semi-arid Sene-
gal, indicating that the performance of LAI_MOD is 
site-specific. Thus, site-level cross-validation for comparison 
with local tower-based LAIg measurements should be un-
dertaken in advance of using LAI_MOD to simulate water 
and carbon cycles in many ecological and hydrological 
models (Weiss et al., 2004; Cao et al., 2015; Zhu et al., 2017). 
In this study, taking satellite-based FPAR and kt estimations, 
the seasonal variations of LAI could be indirectly inversed 
from a simple remote vegetable index (NDVI or EVI) 
whose equation could be simply derived from Eqn. 9 as fol-
lows (Eq. 12): 

     

2

e

ln(1 (NDVI/ EVI))
(NDVI/ EVI)
fLAIs

f
-

=-         (12)
 

where LAIs is satellite-based LAI estimations, f2 (NDVI/ 
EVI) and fe (NDVI/EVI) are the quadratic functions and the 
exponential function between FPAR/kt and NDVI/EVI    
in this study (Fig. 3). Both LAI_NDVI and LAI_EVI     
performed better in LAIg estimation (higher R2 and closer 
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Fig. 3  Satellite-based estimations of the fractions of absorbed PAR by vegetation canopy (FPAR) and the extinction 
coefficient (kt) in the alpine meadow study area (n = 63)  

 

 
 

Fig. 4  Seasonal patterns of LAI observation (LAIg) and 
satellite-based LAI estimations derived from satellite-based 
PFAR and kt estimations (a); and comparison with the LAIg 
from 2009 to 2011 (b). Slope values and dashed lines in (b) 
are the linear slope between LAIg and satellite-based LAI 
estimations, and the reference lines of 1:1, respectively. All 
linear regressions are extremely significant (P < 0.0001). 

to 1:1 line) (Fig. 4). Many previous studies have investi-
gated the relationship between remote vegetation indexes 
and LAI (or above ground biomass that was closely related 
to LAI) (Zhou et al., 2013; Kang et al., 2016; Liu et al., 2017). 
For example, linear NDVI/EVI based biomass/LAI models 
have performed well in alpine grasslands (Zhou et al., 2013; 
Liang et al., 2016). Therefore, this study provided a more 
efficient remote sensing method to develop rational simula-
tions of the seasonal variations of photosynthetic parame-
ters. 

5  Conclusions 
This study used tower-based meteorological and plant 
measurements to estimate the key photosynthetic parameters, 
FPARg, kt, and LAIg. Compared with satellite-based 
FPAR_MOD and LAI_MOD estimations, we introduced a 
pure satellite-based (NDVI and EVI) method derived from 
the Beer-Lambert law to estimate these parameters for the 
years 2009 to 2011 in a typical alpine meadow on the Ti-
betan plateau. Results showed that daily averages of FPARg 
were 0.33, 0.37 and 0.35, respectively, for the years 2009 to 
2011. Tower-based FPAR_LAI estimations derived from the 
Beer-Lambert law provided significant underestimations of 
FPARg (approximately 20%) due to the constant k (0.5) 
being used throughout the entire growing season. This sug-
gests that it is not appropriate to use FPAR_LAI to validate 
the FPAR_MOD. Indeed, considering that the seasonal vari-
ations of k range from 0.19 to 2.95, FPAR_NDVI and 
FPAR_EVI provided better descriptions in FPARg estima-
tions, with a negligible overestimation less than 5% of 
FAPRg (RMSE=0.05), than did FPAR_MOD and FPAR_AI. 
The high temporal-spatial resolution of remote products 
made the satellite-based photosynthetic parameters for 
FPARg, kt, and LAIg estimation easy to upscale both tem-
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porally and spatially scale, especially in remote areas that 
were difficult to access for field observations. However, 
these satellite-based models should also be validated by 
site-specific tower-based radiation and plant measurements 
before they are upscaled, because the sun-sensor view ge-
ometry, soil color, and the fraction of diffuse light (on 
cloudy and clear sky days) might have detrimental effects 
on estimation accuracy.  
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西藏高寒草甸冠层光合参数的遥感估算：站点研究 

牛  犇 1，何永涛 1, 2，张宪洲 1, 2，石培礼 1, 2，杜明远 3 

1. 中国科学院地理科学与资源研究所，生态系统网络观测与模拟重点实验室，拉萨高原生态研究中心，北京 100101； 
2. 中国科学院大学，资源与环境学院，北京 100190； 
3. 日本国家农业环境科学研究所, 农业和粮食研究组，筑波 305-8604，日本 

摘  要：太阳辐射驱动的植物光合作用是所有生物圈功能的基础。高寒草甸生态系统范围广，土壤碳密度高，气候变化剧烈，因

此是高寒生态系统关键过程响应气候变化的指示器。然而，对高寒草甸生态系统光合作用的主要参数，包括被冠层吸收的光合有

效辐射占比（FPAR）、冠层消光系数（k）和冠层叶面积指数（LAI）季节动态的研究较为缺乏。利用 2009–2011 年太阳辐射各组

分和植被叶面积指数观测，分别估算了位于西藏自治区当雄县一个典型的高寒草地生态系统的这三个光合参数，并与最新 MODIS
（collection 6）遥感 FPAR（FPAR_MOD）和 LAI 产品（LAI_MOD）进行了对比。此外，基于比尔–朗伯吸收定律和 MODIS 植

被指数产品（归一化植被指数 NDVI 和增强型植被指数 EVI），本研究介绍了一个纯遥感手段估算高寒草甸生态系统植被冠层光

合参数季节动态的方法。结果表明：2009–2011 年该研究区高寒草甸日均 FPAR 分别是 0.33、0.37 和 0.35，所有 4 个基于遥感的

FPAR 产品，包括 FPAR_MOD、基于比尔–朗伯吸收定律（常数化消光系数为 0.5）估算的 FPAR_LAI，以及 2 个利用 MODIS 植

被指数产品与 FPAR 地面观测（FAPRg）建立非线性统计模型估算的 FPAR（FPAR_NDVI 和 FPAR_EVI）均对 FPARg 的年内季

节变异做出了很好的解释。相比而言，FPAR_MOD 严重低估了 FPARg，低估量超过了 FPARg 本身的 40%；FPAR_LAI 也明显低

估了 FPARg，低估量将近 20%，这主要是由于比尔–朗伯吸收定律中 k 值在整个生长季都被设置为常数 0.5，因此用 FPAR_LAI
去校准 FPAR_MOD 在该高寒草甸不是一个科学合理的方法。通过遥感估算，该高寒草甸的 k 值存在明显的季节变异，变异范围

是 0.19–2.95。考虑 k 值的季节变化后，FPAR_NDVI 和 FPAR_EVI 明显地提高了对 FPARg 的估算精度，二者对 FPARg 虽然有轻

微的高估，但高估量均不到 5%（RMSE=0.05）。基于植被指数（NDVI 和 EVI）模拟的 FPAR 和 k 的季节动态，利用比尔–朗伯吸

收定律估算的植被叶面积指数（LAI_NDVI 和 LAI_EVI）明显提高了遥感 LAI_MOD 产品的准确度。本研究揭示了基于比尔–朗
伯吸收定律，植被指数构建的遥感模型可以提供该高寒草甸 FPAR、k 和 LAI 季节动态简单而有效的估算方法。 

关键词：太阳辐射组分；比尔-朗伯吸收定律；消光系数；叶面积指数；高寒草甸；西藏高原 

 


